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Abstract

An experimental technique for completely characterizing a viscoelastic material, by determining the
Poisson ratio and the complex dynamic Young’s modulus of a small beam-like specimen subject to seismic
excitation is presented in this paper, together with the theoretical background.

The same experimental device is used basically for both kinds of tests: the specimen is instrumented,
placed into a temperature controlled chamber and excited by means of an electrodynamic shaker. The
longitudinal and the transversal deformations are measured by strain gauges to get the Poisson ratio,
whereas the vertical displacement of the specimen and the acceleration of the support are measured to get
Young’s modulus of the tested material.

The experimental curves of the Poisson ratio and of Young’s modulus, obtained at different
temperatures, are then gathered into a unique master curve by using the reduced variables method. The
two master curves, respectively, represent the Poisson ratio and Young’s modulus for the tested material in
a very broad frequency range.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

According to the theory of viscoelasticity [1–3], knowledge of two parameters is required in
order to have a complete dynamic characterization of the mechanical behaviour of an isotropic
viscoelastic material.
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The usual procedure consists of measuring two moduli (e.g., the elasticity and the shear
modulus) or one modulus and the Poisson ratio of a viscoelastic material, through ad hoc
experimental tests carried out at different temperatures. It is also well known that such parameters
have a certain dependence on many environmental and operating conditions, but mainly on
frequency and temperature.
A short review of the experimental work on the measurement of the dynamic parameters of a

viscoelastic material is presented in the following.
Gottenberg and Christensen [4] measured the complex shear modulus of a linear, isotropic,

viscoelastic solid and determined its dependence on frequency and temperature.
The work by Pritz [5–8] is of primary importance. He evaluated the complex modulus of

acoustic materials using a transfer function method, namely by exciting a cylindrical or prismatic
specimen at one end, the other end being loaded by a mass, and by modelling the specimen by
lumped mechanical elements. In this way the transfer function of the specimen from the excited
end to the loaded one could be determined.
Holownia [9] employed a technique, based on holographic interferometry, to measure the

dynamic Young’s modulus for rubbers. Holownia and Rowland [10] used the electronic speckle
pattern interferometry (ESPI) technique to obtain a measurement of the dynamic bulk modulus
for rubbers, by gauging the volume contractions of submerged specimens subjected to sinusoidal
pressure changes.
Sim and Kim [11] managed to estimate the properties of viscoelastic materials for finite element

method application, by means of a technique based on theoretical considerations as well as on
data obtained from transmissibility measurements.

.Odeen and Lundberg [12] measured the endpoint accelerations of an impact-loaded rod
specimen and, by applying an iterative numerical scheme, obtained quantitative values for the
complex modulus of a linearly viscoelastic material. Trendafilova et al. [13] measured the
displacements, instead of the accelerations, of the specimen ends by means of electro-optical
transducers to get the same results.
A major problem with this kind of experimental tests is that the frequency range of the

measurement is often quite narrow, since the techniques used do not allow the values of the
parameters to be obtained directly in a broad frequency range. Recently, some techniques have
been proposed and applied to overcome this problem, as for instance those based on quasi-static
methods and on ultra-sound methods [14,15].
Another approach to greatly enlarge the frequency range of measurement is based on the

so-called ‘‘method of reduced variables’’ [2]. This technique is based on the time–temperature
superposition hypothesis: in other words, the behaviour of any viscoelastic parameter at a given
temperature over a broad range of frequency can be obtained by suitably combining the plots of
that parameter, at different temperatures and over narrower frequency ranges.
The present work describes the determination of both the Poisson ratio and Young’s modulus

for some viscoelastic material (a mixture of PVC and calcium carbonate used for industrial
purposes) which was at our disposal.
The paper is organized as follows. First, the theoretical framework used as a basis for the

experimental measurement of both moduli is presented. To begin, the definition of the Poisson
ratio is given, first in the time domain and then in the frequency domain by means of complex
numbers. Next, the theory behind the experimental tests for the measurement of Young’s modulus
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is presented. Such theoretical background turns out to be much more complicated than the one
for the Poisson ratio, because a formula explicitly expressing Young’s modulus in terms of
measurable entities is needed.
Then, the experimental set-up for the two series of tests is described. The same set-up (i.e., a

specimen of the viscoelastic material mounted on a support and excited by an electrodynamic
shaker placed inside a temperature controlled chamber) has basically been used for both types of
tests, the differences lying in the type of entities that are measured, as well as in some experimental
conditions (as the type of boundary conditions to which the specimen is subject). Namely, the
longitudinal and the transversal deformations are measured by strain gauges to get the Poisson
ratio, whereas the vertical displacement of the specimen and the acceleration of the support are
measured by a laser sensor and an accelerometer to get Young’s modulus.
In this way, the values of the two moduli for the material under test, at a certain temperature

and over a small frequency range, were obtained. The test was then repeated for different
temperatures, so as to obtain a set of curves for the Poisson ratio and another set for Young’s
modulus. Each set of curves was then gathered into a unique master curve by using an iterative
procedure based on the reduced variables method. In other words, the causality condition, which
relates the absolute value to the phase angle of any complex parameter of a causal system, was
used to determine the shifts that should be applied to the curves at the different temperatures in
order to obtain a unique master curve at a reference temperature. The two master curves thus
obtained respectively represent the Poisson ratio and Young’s modulus for the viscoelastic
material in a very broad frequency range.
A more detailed theoretical background, as well as some partial results of the work done by the

authors of this paper during many years of work on this topics, can be found in Refs. [16–20].

2. Theory of the Poisson ratio

For a viscoelastic material, the Poisson ratio nðtÞ can be defined [1] as the opposite of the ratio
of the lateral strain eyðtÞ to the constant axial strain exðtÞ; under uniaxial stress relaxation
conditions. In other words, nðtÞ is the lateral strain due to a unit step of longitudinal strain. Hence,
in uniaxial stress conditions the lateral strain can be obtained from the axial strain through a
convolution integral:

eyðtÞ ¼ �
Z t

�N

nðt � tÞ
dex

dt
dt: ð1Þ

In order to obtain an expression in the frequency domain, nðtÞ can be split into a constant term
and a time-varying term, which becomes zero for t approaching infinite:

nðtÞ ¼ nN þ #nðtÞ where #nðtÞ-0 for t-N: ð2Þ

Substituting Eq. (2) into Eq. (1), introducing complex numbers to represent periodic entities of
the type eðtÞ ¼ e0eiot; and making the change of variable ðt � tÞ ¼ Z; the expression of n in the
frequency domain can be obtained:

nðioÞ ¼ �
eyðioÞ
exðioÞ

; ð3Þ
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where the complex the Poisson ratio nðioÞ is defined, with respect to the corresponding relaxation
function, as

nðioÞ ¼ nN þ io
Z

N

0

#nðZÞe�ioZ dZ: ð4Þ

As it can be seen from Eq. (3), nðioÞ can be directly obtained from measurements of the
longitudinal and transverse strains at each frequency in uniaxial stress conditions. Thus, for the
Poisson ratio there is no need to further elaborate the above expressions.
A beam in bending provides a good experimental approximation to uniaxial stress. Hence, a

specimen of the considered material can be built, that implements a beam which is excited by an
electrodynamic shaker generating a sinusoidal seismic wave. Then, longitudinal and transverse
strains can be measured at the same location by means of a couple of strain gauges (each one is
composed of two perpendicular superimposed grids) located on the upper and lower face of the
beam.
In order to keep the stress distribution as near as possible to uniaxial conditions, the so-called

‘‘plate-effect’’ of the beam must be considered. In fact, the wider the beam, the smaller the
transverse strain, and if the beam degenerates into an infinitely wide strip, then the transverse
strains will always be zero and plain strain conditions will hold.
The plate effect is especially to be considered in tests at different frequencies, since if the input

frequency increases, the response of the system is more and more influenced by higher modes. In a
simply supported beam, higher modes correspond to smaller distances between zeroes of the
eigenfunctions, which can be considered equivalent to shortening the specimen.
An important consideration, which will affect the placement of the strain gauges on the

specimen, is that if a beam is excited by a shaker, only odd modes appear in the response because
the inertia loading is constant along the beam. Thus, if the strain gauges are placed at a distance
from a support which is equal to one third of the length of the beam, then the third mode and
some higher odd modes (like the ninth etc.) do not affect the measurement, because the sensor
location corresponds to a zero of the eigenfunction. Under these conditions, the strains measured
at one third of the beam length are due to the first, fifth, seventh, eleventh, etc., mode. A sketch of
the beam-like specimen showing the gauge location, the geometric parameters of the beam and the
used reference system is reported in Fig. 1.
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We define now the ‘‘apparent’’ the Poisson ratio as the opposite of the ratio between the
transverse and the longitudinal strains measured at one third of the length of the beam:

naðc=b; ioÞ ¼ �
eyðx ¼ c=3; ioÞ
exðx ¼ c=3; ioÞ

; ð5Þ

which is a function of frequency and of the length-to-width ratio of the specimen. Following such
a definition, the error in the measurement of the absolute value of the Poisson ratio can be written
as

errorðc=b; ioÞ ¼ jna=n� 1j: ð6Þ

Giovagnoni [16] proved that, if the input frequency is less than 1.41 times the resonance
frequency of the beam, there is an upper bound to the error defined in Eq. (6).
Referring to the tests for the Poisson ratio carried out by the authors, the beam-like specimen is

0.1m long and 7mm wide, and the distance c between the supports is 95mm, thus yielding a c=b
ratio equal to 13.571. Hence, if the input frequency is less than 1.41 times the resonance frequency,
it results that the maximum error due to the plate effect is 2.6%. This means that the absolute
value of the measured the Poisson ratio, i.e., the apparent the Poisson ratio as defined in Eq. (5),
will decrease in this frequency range due to the plate effect, and this erroneous decrease will be
limited to 2.6%.

3. Theory of Young’s modulus

It will be shown in this section that Young’s modulus can be obtained through experimental
measurements in a beam-like specimen seismically excited by a sinusoidal force input, namely by
simultaneously measuring the vertical displacement of a suitable point of the bending beam and
the acceleration of the supporting basement.
The definition of Young’s modulus, as well as its representation as a complex number, is quite

similar to that of the Poisson ratio given in the previous section. First, it should be recalled that
the relaxation modulus EðtÞ for an isotropic material is defined as

sðtÞ ¼
Z t

�N

Eðt � tÞ
deðtÞ
dt

dt; ð7Þ

where sðtÞ is the stress and eðtÞ the strain in condition of uniaxial stress relaxation conditions. The
strain history can be specified as a harmonic function of time eðtÞ ¼ e0eiot; while EðtÞ can be split
into the sum of an asymptotic constant term EN and a time-variable one E0ðtÞ:

EðtÞ ¼ EN þ E0ðtÞ; ð8Þ

where E0ðtÞ-0 as t-N. Such a decomposition is necessary to obtain an expression for the
complex Young’s modulus whenever the viscoelastic body is subjected to steady state oscillatory
conditions. As for the Poisson ratio, Young’s modulus in the frequency domain can be expressed
by

sðtÞ ¼ ENe0eiot þ ioe0

Z t

�N

E0ðt � tÞ eiot dt; ð9Þ
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which becomes, after setting t � t ¼ Z:

sðtÞ ¼ EN þ io
Z

N

0

E0ðZÞ e�ioZ dZ
� �

e0eiot: ð10Þ

To be consistent with the steady state conditions assumed for strain history, the stress will be
taken to have the same steady state form:

sðioÞ ¼ EðioÞ e0eiot; ð11Þ

which gives Young’s modulus as a ratio between complex numbers:

EðioÞ ¼
sðioÞ
eðioÞ

: ð12Þ

Hence, the complex Young’s modulus EðioÞ eventually results:

EðioÞ ¼ EN þ ioE0ðioÞ: ð13Þ

However, Eq. (13) cannot be practically employed, since stress measurements cannot be easily
and accurately performed. It is therefore necessary to obtain an expression for Young’s modulus
suitable for experimental measurements that can actually be performed in a laboratory. To this
aim, the theory of seismically excited beams should be employed. The theoretical procedure to get
this expression for Young’s modulus has been proved in a previous paper by Caracciolo et al. [19],
so only the most important considerations and the final results will be reported here.
The crucial point is to express the modal co-ordinate used for decoupling the equation of a

seismically excited beam as a function of an entity that can be experimentally measured. At the
beginning, the first idea of the authors, in order to measure the strain at a suitable point of the
specimen, was to employ a strain gauge, as done for measuring the Poisson ratio. However, the
results of the tests were not satisfactory because the glue used to fasten the gauge to the specimen
stiffened the viscoelastic material, thus heavily affecting the measurements. The idea was then to
use a contactless laser sensor, that measures the absolute local vertical displacement of the
specimen. Therefore, the modal co-ordinate is to be expressed as a function of the absolute
displacement uL measured by the laser sensor.
A way to approximate the eigenfunction expansion with only the first term can be done by

positioning the laser at a distance d from the clamped edge of the beam, such that the second
eigenmode is not excited, and by neglecting the higher order modes (it has been shown by
Caracciolo et al. [19] that the error due to the third mode is less than 0.32%, and it decreases
rapidly with the order increase). Thus, after some algebra, the final expression obtained is

EðioÞ ¼
rL4

h2
F1

uLðioÞ
abðioÞ

þ
1

o2

� ��1

þF2o2

" #
ð14Þ

where r is the material density, L is the beam length, h is the beam depth, uL is the absolute
displacement measured by the laser sensor, ab is the acceleration of the base of the support of the
beam, and the dimensionless parameters F1 and F2 are computed according to the theory of
beams. Namely, by applying Eq. (14) to the case of a cantilever beam, the expression to get
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Young’s modulus of the tested specimen becomes:

EðioÞ ¼
rL4

h2
�1:0686

uLðioÞ
abðioÞ

þ
1

o2

� ��1

þ0:9707o2

" #
: ð15Þ

4. Experimental set-up and measurement results for the Poisson ratio

In order to measure the Poisson ratio, the specimen of the viscoelastic material (a mixture of
PVC and calcium carbonate) is mounted (under ‘‘pinned–pinned’’ conditions) to a support placed
on an electrodynamic shaker. Special care had to be taken in order to ensure the following test
conditions:
(1) the modifications in the input acceleration due to resonances of the base carrying the

specimen had to be minimized; (2) the mechanical loading effect due to the wires connecting the
strain gauges had to be minimized; (3) the friction in the supports had to be minimized. This was
done by making each support with two coaxial counteracting screws with conical points.
The wires connecting the strain gauges are very thin insulated wires (those usually employed in

the micro-motor coils) that are connected to a small plate fixed inside the base. In this way, the
quality of the measurements could be significantly improved, by increasing the low signal-to-noise
ratio.
The scheme of the measurement system for the Poisson ratio is reported in Fig. 2(a).
The sensors used in the tests are Micro Measurements CEA-06-125WT-350 strain gauges

connected to Hottinger–Baldwin KWS 3082A carrier amplifiers (carrying frequency 5 kHz). Each
gauge is made by means of two superimposed orthogonal grids with two sensors located on the
upper and lower side of the beam, so as to compensate the signal with respect to temperature
changes. The two signals of the transverse and lateral strain are then input into a National
Instruments AT2150C plug-in board for analogue-to-digital conversion.
All tests at different temperatures were carried out by slowly sine-sweeping the input

acceleration of the base. The longitudinal strain was kept to a constant value (about 15me) during
the sweep by using the corresponding signal as the feedback input for the sweep controller. No
linearity problems were observed: the results were shown to be independent from the strain level.
The temperature controlled chamber is implemented by means of a closed air circuit, made of a

fan forcing the air through a cooling panel and a heating resistance. The temperature distribution
in the air flow is homogenized by means of a honeycomb panel before reaching the specimen. The
temperature control is obtained by keeping the cooling element on and by adjusting the current
through the heating resistance. The value of the air temperature is measured near the specimen
and a simple proportional gain is used to drive the heating element. The whole set-up has been
brought to stationary conditions before each test.
Measurement results are shown in Fig. 3 with the corresponding test temperatures. The plots

show the absolute value of the Poisson ratio in the frequency interval 75–530Hz. It can be noted
that all the functions shown in Fig. 3 decrease with frequency. A first remark is that, as the
temperature increases, the absolute value of the Poisson ratio also increases. A second remark is
that the slope of the curves increases at higher temperatures. However, it should be noted that the
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curves in Fig. 3 are quite flat and this requires special care when overlapping them to determine
the frequency shifts, according to the procedure described in the next Section.

5. Application of the reduced variables method for determination of the master curve of the poisson

ratio

The ‘‘reduced variables method’’ [2,3] states that all the curves of a specific modulus of some
material at different temperatures, like those of the Poisson ratio reported in Fig. 3, can be
gathered in a single plot, the so-called ‘‘master curve’’, that accounts for the material property in a
much broader frequency range. In other words, a unique plot of some viscoelastic property versus
frequency at a given temperature T0 can be obtained in logarithmic axes by shifting of an amount
(log aT) every plot of the same viscoelastic property measured at a temperature T. The parameter
log aT is defined by the WLF equation:

log aT ¼ �c01ðT � T0Þ=ðc02 þ T � T0Þ: ð16Þ
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The two constants c01 and c02 appearing in Eq. (16) depend on the temperature T0 that was to
reduce the plots (of course, they also depend on the considered material). Thus, by shifting the
experimental curves taken at different temperatures, one can obtain a unique plot covering several
decades of frequency. In order to determine c01 and c02; adjacent curves must be shifted so as to
make them overlap. In this way one heuristically can build a first version of the master curve, and
the shifts given to the curves enable one to find the values of c01 and c02: Unfortunately, this
procedure cannot be practically used, because the errors in the shifts between adjacent curves at
neighbouring temperatures add up continuously while trying to building the master-curve, so that
the shifts of the experimental curves taken at temperatures very different from the reference
temperature T0 can be affected by severe errors. This problem becomes even more critical if the
curves are flat (as in the case of the experimental plots of the Poisson ratio) because in this case
small vertical displacements of the plots correspond to large horizontal displacements in
overlapping; hence, large errors are very likely to occur.
As expected, a first attempt to build up the master curve using the heuristic procedure described

in the foregoing did not give satisfactory results: the coefficients c01 and c02; obtained from heuristic
shifts, resulted very different from those reported in the literature for polymers similar to the
material under test.
Hence, a more sophisticated procedure had to be conceived. So, the following procedure based

on a cross-verification of the shifts by means of a ‘‘causality criterion’’ was applied, and much
better results were obtained.
The causality criterion on which the procedure is based can be expressed as follows. It should be

remembered that the real part and the imaginary part of the frequency response of whatever
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existing entity are not independent, since they are obtained from the same real function, i.e., the
response to the unit impulse. In other words, the absolute value and the phase of any frequency
response are related to each other, because otherwise anti-transformation of the frequency
response would yield a non-zero impulse response before the initial instant t ¼ 0; i.e., before the
application of the input signal. Hence, such a system would be non-causal, as it would react before
the application of the input, which is absurd for any system existing in the real world. For this
reason, the relation existing between the absolute value and the phase of a frequency response is
called ‘‘causality relation’’.
The Poisson ratio, a complex number, can be regarded as a frequency response with the

longitudinal strain as input and the transverse strain as output. Thus, as for any frequency
response, the causality condition must hold to ensure that the corresponding impulse response (or,
as in Eq. (1), the unit-step response) in the time domain is a real function equal to zero before the
application of the input. An approximate version of the causality condition relates the logarithmic
derivative of the absolute value n to the phase angle j of Poisson ratio in the form expressed by
the so-called ‘‘Bode’s theorem’’:

jðioÞD
p
2

d logjnðioÞj
d log o

: ð17Þ

Eq. (17) is also known as the ‘‘dispersion relation’’, namely the approximate, local version of
the Kramers–Kr .onig relation, after the authors who developed them first in the theory of
electromagnetic wave propagation. It must be kept in mind that such an approximation is suitable
if one assumption holds, namely that the dynamic properties of the material are slowly varying
functions of frequency, as discussed in Ref. [21]; hence, one has to be cautious when using the
local Kramers–Kr .onig relation for calculation, because they are not exact.
The procedure to determine the shifts of the experimental curves in order to build the master

curve will now be described. As it can be seen from Fig. 3, the plots of the absolute values of the
Poisson ratio are quasi-straight lines and the corresponding phase plots do not show significant
variations, as one can expect from Eq. (17). Thus, every experimental curve at a temperature Ti

can be interpolated with a straight line for the absolute value and with a constant straight line for
the phase angle, in accordance with Eq. (17). The shifts are then determined by overlapping the
straight lines representing the absolute values by means of the least-squares method. At this stage
of the procedure, a first master curve at the reference temperature T0 is obtained in the form of a
piece-wise straight line for the absolute values and a piece-wise constant plot for the phase angles
in accordance with Eq. (17).
Eq. (17), if differentiated once more, yields:

djðioÞ
d log o

D
p
2

d2logjnðioÞj

dðlog oÞ2
: ð18Þ

This relation suggests that the slope of the diagram of the phase angle corresponds to the
curvature of the diagram of the absolute value. It is important to note that the slope of the phase
plot is determined by the shifts, because the mean value of the slope can be obtained by dividing
the phase difference between two neighbouring diagrams by the shift between the same two
diagrams. Moreover, the mean value of the slope of the phase corresponds to the mean value of
the curvature of the absolute value. Thus, a better interpolation of the absolute values is obtained

ARTICLE IN PRESS

R. Caracciolo et al. / Journal of Sound and Vibration 272 (2004) 1013–10321022



by using arcs of parabolas instead of straight lines. The overlapping procedure is then repeated for
the parabolas in order to determine new shifts, which in turn enables one to update the values of
the curvatures. This process is repeated until convergence is reached to the final shifts which will
be used to build up the master curve. A direct application of this procedure to the experimental
curves at hand showed that just few iterations are necessary to obtain stable shifts. The resulting
values of the shifts enable one to obtain the c01 and c02 coefficients appearing in Eq. (16); the
resulting values are in good agreement with those reported in the literature for Young’s or shear
modulus for polymeric materials.
For sake of clarity, the procedure is reported here step by step:
(1) a straight line is obtained through a least-squares fit of experimental data at temperature Ti:

nij j ¼ bix þ gi and ji ¼
p
2
bi where x ¼ log o;

(2) the absolute value and the phase in the midpoint xm of the frequency-range of measurement
are computed from:

niðxmÞj j ¼ bixm þ gi and jiðxmÞ � ji ¼
p
2
bi:

These values will be left unmodified during the whole procedure, as they are obtained directly
from the measurements;
(3) the following steps are then repeated in the procedure ( j is the iteration index):
(3.1) shifts s

j
i ¼ ðlog aT Þ

j
i for each plot at temperature Ti in the jth iteration are determined by

overlapping the parabolic functions:

nij jj¼ aj
ix

2 þ bj
ix þ gj

i

by means of a least-squares fit between plots at adjacent temperatures. The values of aj
i; b

j
i and gj

i

are updated at every iteration, after letting a0i ¼ 0; b0i ¼ bi and g0i ¼ gi:
(3.2) if xm is the same for all measurements, a mean slope of the phase at each temperature can

be computed using the values of the shifts calculated at point 3.1:

dji

dx

� �j

¼
jiþ1 � ji�1

s
j
iþ1 � s

j
i�1

¼
p
2

biþ1 � bi�1

s
j
iþ1 � s

j
i�1

:

This mean slope determines the a parameter, i.e., the curvature, of the updated parabolas.
(3.3) It is now imposed that for x ¼ xm; the updated parabolas satisfy the curvature of point

(3.2) and the slope and value of point (2). We obtain new values ajþ1
i ;bjþ1

i ; gjþ1
i at the temperature

Ti from the following relations:

2aJþ1
i ¼

dji

dx

� �j

;

2aJþ1
i xm þ bJþ1

i ¼ jiðxmÞ;

aJþ1
i x2

m þ bJþ1
i xm þ gJþ1

i ¼ niðxmÞj j:

These values can be employed again in step (3.1). Step 3 is repeated until no significant change is
found in updating the curves. In our case, less then 10 iterations were enough to this purpose.
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Fig. 3, together with the experimental curves, also shows the parabolas obtained at the end of the
iterative procedure.
Reliable shifts are now available to build up the master curve. Applying a least-squares fit of

ðT � T0Þ=log aT versus ðT � T0Þ the values c01 ¼ 19:6; c02 ¼ 198:1 for T0 ¼ 278 K are obtained.
They are in reasonable agreement with the values reported in the literature for Young’s or shear
modulus of materials similar to that of the analyzed specimen.
The c01 and c02 coefficients can now be employed to build up the master curves of the absolute

value and of the phase angle of the Poisson ratio. These master curves are shown in Figs. 4 and 5,
respectively.
The master curve of the absolute value, shown in Fig. 4, needs no particular comment: the final

result is good and shows that the absolute value of the Poisson ratio really decreases with
frequency. Several decades of frequency are now available and this allows one to deduce that the
decrease is true and not simply due to the plate effect of the specimen, as one could suppose.
The master curve of the phase angle, shown in Fig. 5, needs a deeper comment. As can be seen,

the values of the phase angles are negative and very small (they vary between �1.2	 and �0.1	).
This remark agrees, as predicted by the causality condition, with the fact that absolute values
decrease, but very slowly as the frequency increases. However, the slope of each phase plot should
be positive to match the overall behaviour and this is not the case of Fig. 5. On the other hand, it
should also be noticed that the variation of the value of the phase angle due to the negative slope
is small, if compared to the mean value of each plot.
In other words, the mean values of the phase angles are in good agreement, also with the slope

of the master curve of the absolute value, but the slopes are not. Thus, a reasonable hypothesis is
that the error due to the plate effect of the specimen is not so severe as to modify the mean values,

ARTICLE IN PRESS

Fig. 4. Master curve of the absolute value of the Poisson ratio.

R. Caracciolo et al. / Journal of Sound and Vibration 272 (2004) 1013–10321024



but it is important enough to change the slope of the plots of Fig. 5. In the plots of the absolute
value, this effect corresponds to a small change in curvature, which plays no relevant graphical
role in the overlaps of Fig. 4.
The procedure based on the causality criterion has produced reasonable coefficients for the

WLF equation, while simple overlaps did not. However, modifying the curvature of the parabolas
to satisfy the causality requirements corresponds to compensating the mismatching of the slopes
in the phase-plots, and this process produces reasonable WLF coefficients. Thus, an error affects
the slopes of the phases and this is probably due to the plate-effect of the specimen, which acts in
the sense of emphasising the decrease of the complex the Poisson ratio with frequency.

6. Experimental set-up and measurement results for Young’s modulus

The complex dynamic Young’s modulus has been measured for the viscoelastic material using
the procedure reported in the following. This procedure is based on the theoretical considerations
carried out in Section 3. A beam-like specimen has been placed onto an ad hoc support and
excited by an electrodynamic shaker that produces a vertical sine-sweep seismic force. A laser
sensor measures the vertical displacement of a specific point of the beam, namely the nodal point
for the second eigenmode, and a piezoelectric accelerometer measures the vertical acceleration of
the base.
Fig. 6 shows the specimen characteristics, and Fig. 7 is a diagram of the set-up of the beam on

the support, which in turn is placed onto the electrodynamic shaker. Fig. 8 is a picture of this
experimental set-up. This apparatus is located inside a temperature controlled chamber, so as to
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be able to carry out several tests at different temperatures. Fig. 2 (B) shows a diagram of the whole
measurement system, which contains the same temperature controlled chamber used for the tests
on the Poisson ratio.
A specifically designed aluminium cup supports the specimen, which is glued to the cup at one

extremity, so as to implement a cantilever beam. The choice of a cantilever beam, i.e., a beam with
clamped–free boundary conditions, turned out to be the optimal one for this kind of tests after
many years of tests where different boundary conditions were tried.
The specimen is excited by the shaker, and it is subject to a seismic bending force. According to

Eq. (14), in order to determine an expression for Young’s modulus of the specimen, the absolute
displacement of the specimen itself, as well as the acceleration of the support are required. The
latter is measured by an accelerometer set on the edge of the support; the former is provided by a
laser sensor, which measures the absolute displacement of the specimen at the point where the
amplitude of the second eigenmode is null (for a cantilever beam, at a distance from the fastened
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extremity equal to 0.7834 times the free length of the beam). In this way the error made by
approximating the whole eigenfunction expansion with the first eigenmode only is reduced (less
than 0.4% in the frequency range used in the experiment).
The laser sensor is employed in the experimental apparatus is an OptoNCDT series 1605-2 by

MicroEpsilon, that has a resolution of 0.5 mm on a measurement range of 71mm. The main
advantage of using a contactless sensor to measure the small displacements of the beam lies in the
fact that no perturbation of the measurement is introduced (conversely, using a strain gauge glued
to the specimen did locally change the stiffness of the material, as proved by some experimental
tests made in the earlier stages of the work).
A second cantilever beam of the same material, identical to the one tested, but instrumented

with a strain gauge, was mounted onto the support, in order to provide a feedback signal to the
sweep controller that drives the shaker. The control value of the longitudinal strain was set at
20mm/m.
Finally, the dynamic analyzer is a dedicated software, made by the authors, running on a PC in

a Labview environment. The experimental signals are input to the PC through a National
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Instrument AT-A2150 I/O board, and then they are analyzed and elaborated by the software, so
as to get curves for both absolute values and phase angles of Young’s modulus at different
temperatures.

7. Application of the reduced variables method to determine the master curve for Young’s modulus

Figs. 9 and 10 show the experimental results of the measurement of Young’s modulus for the
viscoelastic material tested (absolute values and phase angles, respectively). In Fig. 10 some curves
have been deleted for sake of clarity.
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Fig. 9. Absolute values of Young’s modulus at different temperatures.
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The procedure to build the master curve for Young’s modulus is the same used for the Poisson
ratio. It is based on the approximate causality condition and on its derivative, which for Young’s
modulus are, respectively,

jðEðioÞÞD
p
2

d log EðioÞj j
d log o

; ð19Þ

djðEðioÞÞ
d log o

D
p
2

d2 log EðioÞj j

dðlog oÞ2
; ð20Þ

where jðEðioÞÞ is the phase angle of the complex Young’s modulus EðioÞ: Then, the reduced
variables method produces a master curve for Young’s modulus of the considered material.
The steps of the iterative procedure used to get the master curve for Young’s modulus are the

same as those listed in Section 5 for the Poisson ratio, with the substitution of n with E. In this
way, the initial versions of the master curves for the absolute values and for the phase angles could
be obtained. Then, on applying the procedure to the experimental data recorded, only three
iterations were needed to obtain stable values for the coefficients of the parabolas and for the
shifts. At this point, reliable shifts are available to build the master curve. Fig. 11 represents the
shifts obtained at the end of the iteration as a continuous function of the temperature, being
T0=319K the reference temperature.
The values obtained for the coefficients of the WLF equation are: c01 ¼ 19:73 and c02 ¼ 119:40;

which are in reasonable agreement with the values reported in the literature for Young’s modulus
or for the shear modulus of materials similar to that of the tested specimen, as well as with the
values of c01 and c02 obtained from the calculation of the Poisson ratio. The coefficient c01 and c02
could then be used to get the master curves for the absolute value (Fig. 12) and for the phase angle
(Fig. 13) of the complex Young’s modulus in a very broad frequency range (from 102 to 108Hz). It
can be seen from Fig. 12 that the behaviour of the absolute value of Young’s modulus is in good
agreement with the theory, namely it increases with frequency. As for the Poisson ratio, the result

ARTICLE IN PRESS

280 285 290 295 300 305 310 315 320
0

5

10

15

Sh
if

ts
 (

lo
g 

a T
)

Temperature [˚K] 

Fig. 11. Plot of the shifts of the curves of Young’s modulus as a continuous function of the temperature (according to

the WLF equation for a reference temperature T0=319K) and experimental values of log aT at each temperature.

R. Caracciolo et al. / Journal of Sound and Vibration 272 (2004) 1013–1032 1029



for the phase angle is less clear, because the value of the phase angle of the tested material is very
small (a few degrees), hence the measurement noise could definitely affect the result. However, it
can be noted that the maximum of the master curve of the phase angle corresponds to the change
of curvature of the master curve of the absolute values, thus being in agreement with the causality
relation and the theory of viscoelasticity.

8. Conclusions

An experimental method for determining the Poisson ratio and the complex dynamic Young’s
modulus in a small beam subject to seismic excitation was presented in this paper, together with
the theoretical background of such a technique.
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Fig. 12. Master curve for the absolute value of Young’s modulus.
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Fig. 13. Master curve for the phase angle of Young’s modulus.
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The same experimental device has basically been used for both tests: a beam-like specimen was
instrumented and collocated into a temperature-controlled chamber. The specimen was excited by
means of an electrodynamic shaker. To get the Poisson ratio the longitudinal and the transversal
deformations have been measured by strain gauges, whereas the vertical displacement of the
specimen and the acceleration of the support have been measured to get Young’s modulus.
The experimental set-up has been described in detail, and the experimental curves of the

Poisson ratio and of Young’s modulus at different temperatures have been reported. Each set of
curves at different temperatures was then gathered into a unique master curve by using the
reduced variables method. The two master curves, respectively, represent the Poisson ratio and
Young’s modulus for the tested material in a very broad frequency range. It is worth noting that
the improved reduced variables method presented in the paper could also be applied to results
obtained using other experimental methods.
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